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NONLINEAR DISTORTION IN THE PROPAGATION OF INTENSE ACOUSTIC NOISE

by

F. M. Pestorius and D. T. Blackstock

Applied Research Laboratories
The University uc Texas at Austin

Austin, Teias 78712

Abstract
As sound pressure increases to "finite" levels, nonlinear effects usually
ignored in acoustics problems become increasingly important. In this
paper plane waves propagating through a pipe are considered. In the
first section the distortion of a wave that is sinusoidal at the source
is treated. In the second section the source signal is a pulse of band-
limited (500 to 3500 Hz) random noise. In both cases theoretical results
are compared with experimental measurements. Extension of the analysis
to the more practical case of outdoor propagation is indicated.

A good deal of fundamental research, both experimental and
theoretical, has been done on finite amplitude* waves. Almost all of it
has been done on deterministic waveform ; very little has been done on
finite amplitude noise. (1,2) The ultimate goal of the present research

is to attack the problem of propagation of finite-amplitude noise. In an
effort to simplify the problem as much as possible, it was decided to
rEstrict the investigation to plane waves. But how does one handle a
finite amplitude wavw whose waveform is not deterministic? Our approach
has been to use weak-shock theory, cast in the form of a computer
algorithm, to obtain theoretical predictions and to make measurements in
a plane wave tube to check these predictions. To test this approach we
have made a preliminary study of initially sinusoidal waves. Thiz has
been followed by a study of the propagation of pulses of random noise.

The noise is Gaussian and bandlimited to approximately 3 octaves. Sound
pressure levels up to 160 dB (re 0.0002 pbar) have been used. The
results of these studies form the basis of this paper.

Use of the plane wave tube has introduced the complication of tube
wall attenuation and dispersion. Accordingly, we have had to modify weak-
shock theory to take account of these effects. It is simpler in the
beginning, however, to consider distortion in the absence of tube wall
effects.

"Finite amplitude" is a qualitative term. In general it implies that
nonlinear effects, which are ignored in linear acoustics, must be
accounted for. However, some distance may be r-quired for the nonlinear
effects to be noticeable. For example, in air an initially sinusoidal
plane wave of SPL 130 dB (re 0.0002 wbar) forms shocks at a distance of
about 210 wavelengths. An observer much closer than this to the source
would probably view the wave as "infinitesimal" whereas an observer much
further away would see clear evidence that the wave i "\of "finite
amplitude."



When sound waves of large amplitude propagate, the nonlinearity of
the prtpa%,xtion process causes progressive distortion of the waveform.
In a nondispersive medium this distortion will cause a sine wave to
deform into a sawtooth wave, provided, of course, the wave does not first
become "infinitesimal" through absorption. Figure 1 depicts this pro-
gressive distortion for an arbitrarily shaped wave. The vertical axis is
particle velocity (or pressure) and the time base is retarded time
t'int-x/co. Note how the portions of the waveform having larger particle

velocities tend to overtake the slower velocity portions. When this
overtaking ictually occurs, shocks form. 7his is clearly shown at x mx.
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FIGURE 1
WEAK-SHOCK THEORY

Mathematically, the progressive distortion of the continuous portion
of the waveform ir dt~scribed by the propagation law:

co+a 1  c (1)

Here x is distance, t time, u particle velocity and c small-signal sound

speed; for gases = yl (y is in the ratio of specific heats) and for
B

liquids 8 = (B/A is a nonlinearity parameter). At the discontinuity

the propagation of the shock front is described by the weak-shock
relation

( t\ * -,[i 13(u a+ b) ](2
'dtx c 0 l 2c(2



where ua and are values oi' u just ahead of and just behind the shock,

respectively. Notice how different points on the waveform move with
respect to each other. As dissipation at the shock front begins to take
its toll of the wave, points of the waveform in the neighborhood of the
shock just disappear. In the end only those sections of the waveform
that were originally near the zero crossings survive.

Although an explicit analytical solution of Eqs. (1) and (2) (and
appropriate auxiliary equation) can be found for simple waveforms, such a
solution is not feasible for complicated waveforms, particularly non-
deterministic ones such as noise. A computer algorithm in which Eqs. (1)
and (2) are used as the basis for calculating the distortion of an
arbitrary waveform is, however, possible.

We have developed such an algorithm. Equations (1) and (2) are cast
in the form of difference equations and solved. The wave is "computer
propagated" a small distance x, and the original time base is distorted
in accordance with the relation

t' I t' -u X/Co2(3
new old oBUld 0 (3)

This distorted time base is scanned for multivaluedness. If none is
found, another small distance step is taken. This sequence is repeated
until finally multivaluedness, which signifies the presence of a shock, is
found. The shock is located as prescribed by Eq. (2) and the particle
velocities at the shock front are adjusted accordingly. In a periodic
waveform, such as a sawtooth wave, the shock fronts are stationary in the
retarded time frame because the shocks move with speed c . However, in

an arbitrary wave field the shocks exhibit relative motion. A separate
portion of the distortion program monitors this motion and accounts for
shock merging. Through the progression of growing, decaying, and merging,
the shocks ultimately determine the shape and amplitude of the wave. The
distortion algorithm has been tried on several initial signals, including
N waves, ,inusoids, and randomly generated waves. The results are in
excellent ,'greement with such analytical results as are known.

Unfortunately, this simple algorithm does not give a very good
account of itself when the wave motion is in a tube. In 1965, McKittrick,

(3)Blackstock, a.id Wright reported on the measurement of the wave shape
of repeated shocks in a tube. Rather than exhibiting the sawtooth shape
that was expected, these waves had a markedly rounded top while retaining
a sharp trough. It was demonstrated tht t the asymmetry was due to dis-

persion caused by tube wall effects. In a theoretical study Coppens
confirmed the asymmetry and its cause (dispersion) for waves in the pre-
shock region. We have also observed the same asymmetric waveferm in our
measurements. It should be noted that the tube wall causes attenuation
as well as dispersion.

5~7V



71
Our method of accounting for tube wall effects is to Incorporate

attenuation and dispersion directly in our distortion algorithm.* See
Fig& 2. Briefly, for each incremental propagation step the vave is
appropriately distorted. Then an FPr routine is used to express the wave
in terms of its spectral components. The complex amplitude C of" each

spectral component is corrected for the attenuation and phase shift that
occurs over the incremental step as follows:

-rW mx(l~j) )
n n

where C n' is the corrected amplitude and % is the attenuation coefficient

for the fundamental. As is well known for tube wall attenuation m is

proportional to 4l, and this is why the factor rn appears for the nth

harmonic. Note also the phase shift, which is caused by the dispersion.
Since the phase shift is different for each harmonic, the spectral com-
ponents get slightly out of step with each other. This is what causes
the symetry of the vaveform to be ruined, particularly at the shocks.
The asymetry has an effect on the overall decay of the wave, as will
presently be explained. The waveform is inverse transformed and another
distance step is t3ken. In this way, the wave profile at any distance
from the source is realized.

ARMTRADY WEAK-SH4OCK THOR
WAVE"OM PIOPAC.AT ION FIFT
(TIME DOMAIN) ROUTINE

FF'cm, ATTENUATION
AND C

Now let us turn to the experiment. !be plane wave tube is a 96 ft,
2 in. i.d. aluminum pipe composed of eight 12 ft pipe sections. The
sections are joined by carefully constructed 2-piece flanges that are
designed to minimize reflections at the joints. The pipe is terrdnated
in a suitable nonrefl±cting fiberglass wedge. Source frequencies in the
range 800 to 3500 kHz and SPL's in the range 140 to 160 dB have been used.In the following results the fundamental frequency was 2 kHz and the

initial SPL was 160 dB. The sound source was an ALTEC 290 E "Giant Voice"

*The algorithm thus becomes similar to one used by Cook(5) to calculate
the distortion of a sinusoidal wave in a free thermoviscous medium.
Cook did not, however, account for shocks in the waveform by means of
weak-shock theory.



horn driver powered in a pulsed mode by a 200 W Dukane power amplifier.
The pickup microphone van a B & K i/4 in. type 4136, positioned in a
mount so that the diaphrag was flush vith the pipe wall. The microphone
output vas displayed on an oscilloseope and the vaveform photographed.
Figure 3 shows a generalized diagram of the equipment.

?Tuna* .11s| C | A TO m P tL !l(i

FIGURE 3
A GENERALiZEO EFUIPENT ARRANGEMENT

Figure 14 shows one cycle of the measured and computed waveforms at
distences of 1 ft and 13 ft from the sound source. The waveform at one
foot is already somewhat distorted primarily because of non linearities i'"
our sound sou•rce. This raveform is the input signal for both tkhe experi-
ment and the computations. At 13 ft the wave has traveled about 3 rhock
formatiun lengths so that on the basis of simple weak-shock theory it
would be expected to be essentially perfect sawtooth. Because of wall
effects, howevemr, there is already some rounding at its peak. Notice
that only the pleak is rounded, not both the peak and the trough. As
explained earlier, the asymmsetry is due to dispersion. The dashed wave-
form was calcul.ated by omitting the wall effects portion of the algorithm.
Thus, this is the waveform one would expect in an open medium and, of
course, is the same one could compute analytically irom ordinary weak-
shock theory.

.. ... ..-
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In Fig. 5 the 13 ft comparison has been repeated and experimental
and computed vavvforus at 49 rt and 85 ft added. Note the increared
wymmetry, particularly the rounding of the peak, as the wave propagates.
Although the wave do-pietod here is a relatively strong one, we have used
our method to treat weaker waves with equally good results. The dif-
ference between the ý.olid and dashed line theoretical curve* shows how
importr.t tubi wall effects are under our experimental co.atitions.

In Fig. 6 three theoretical curves of the decay of the wave with
distance are shown together with our experimental results. The top curve
is for ordinary weak-shock theory. Again, this is the ame as our com-
puter method gives if the effects of the tube wall are omitted entirely.
The only attenuation is that associated with the dissipation taking place
at the shocks. The middle curve is obtained from our computed waforms
and thus represents a model in which t',be wall attenuation and dispersion
are included along with shock dissipation. The lowst curve is for weak-
shock theory corrected for tube wall attenuation but not for dispersion.
To obtain this curve we have used the equation first suggested by

Rudnick,(6)

"dx - max W 0 p max

This equation gives the rate ijf decay of a sawtooth wave an the sun of
the decay due to ordinary attenuation (the first term) and the decay due to
dissipation at the shocks (the second term). Here pma" in peak preasure,

x distance, cou/c , k vave number, p0 the peak pressure, at xuO, and 8 as

defined previously. The value of a is given by Rudnick's summation method
A Por calculating the effective tube wall attenuation coefficient.

The experimactal points confirm the middle curve, The top curve
represents a prediction of too little attenuation because tube wall
absorption is neglected. Yet when wall absorption is accounted for, one
obtains the lowest curve, and too much attenuation is predicted. We
believe that the key to the success of our model, i.e., the middle cwe,
is the dispersion. The severe rounding of the peaks of t)e shocks caused
by dispersion in effect reduces the amplitude of each shock. Instead of
extending from trough to peak, the actual shock runs only from trough to
a point short of the peak. This lessens the shock dissipation. In other
words, dispersion inhibits the attenuation assocIrted vith the shock.
When weak-shock theory is modified to take account of both dispersion
3nd attenuation, the resuLt is the middle curve.

The decay of sawtooth waves in tubes has received the attention of

several previous investigators.'•') in general they found a discrep-
ancy between their measured values of decay and predicted values obtained
by adding wall losses to shock dissipation. As we now know, dispersion
should have been taken into account as well as wall attenuation. However,
when ve compared their data with predictions based on our theory, in
which account is taken of dispersion, completely satisfactory agreement

A
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was still lacking. The reasons for this are not clear, in that we have
found good agreement with our own measurements for a variety of frequen-
cies in the range 830 to 3500 Hz and sound pressure levels in the range
140 to 160 dB. There are some differences between the earlier measure-
ments and ours. We have generally used higher frequencies and somewhat
lcwer sound pressure levels. Further, the emphasis in the earlier work
was on peak-to-peak amplitude. Little attention was paid to wave shape
so that we do not know the extent to which rounding of the peaks of the
waveform (Figs. 4 and 5) might have influienced interpretation of the data.
Under the -. irclamstances, all that can be said (efinitely at this point is
that our theoretical method has been verified for the middle audio ranges
for sound pressure levels up to about 160 dB.

In order to use the previously described algorithm for noise pulses,
only a few program changes are necessary. The fundamemtal frequency
becomes

f -/T , (6)
fund

where 1 is the length of the pulse. Attenuation and dispersion are again
applied to each spectral component up to the Nyquist frequency.

The experimental measurements were made on a particular pulse of
noise as follows: First a ,andom electrical pulse of noise was bandpass
filtered and recorded on a tape loop. The pulse was then played back,
amplified, and applied to the sound source, in this case a University
65 W horn driver. As a result of the filtering action of the electrical
filter and the horn driver, the spectrum of the acoustic noise pulse as
it started down the tube extended from about 500 Hz to about 3500 Hz.
The initial (pulse) SPL was 160 dB, and the pulse repetition rate was one

per second. A memory type oscilloscope was used to record the waveform
of the pulse at various distances down the pipe.

In Fig. 7 the experimental and computed waveforms are compared.
Note how the noise signal simplifies as the wave propagates.

The number of zero crossings diminishes and minor irregularities in
the waveform disappear as they are "eaten up" by the larger shocks. Note
also the rounding of the wave peaks. As in the sinusoidal case, this is
caused by dispersion. It will be seen that the agrr,ýment between theory
and experiment is quite good.

In terms of freuency, the reduction in number of zero crossings
represents a transfer of energy to the lower end of the spectrum. On the
other hand, the preŽsence of the shocks with their very fast rise times
means that the high frequency end of the spectrum has also been enhanced.
_n general the relative buildup of the upper and lower ends of the spec-
trum takes place at the expense of the middle of the spectrumi. The
effect of nonlinearity is thus to flatten out the spectrum.

In Fig. 8, the 13 ft and 85 ft computed waveforms from Fig. 7 are
repeated and compaxed to waveforms computed by using the algorithm based

4019
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on weak-shock theory alone. Ta the latter case, no correction was made
for attenuation and dispersion caused by wall effects. It is clear that
the wall effects have a significant influence on the waveform, particu-
larly at the greater distance.

In conclusion, we feel that our model adequately describes the
propagation of plane sound waves in a real pipe in the frequency range
of at least 0.5 to 3.5 kHz, at sound pressure levels up to at least
160 dB. The application of the model to outdoor propagation is expected
to be straightforward. The transformation from plane to spherical or

cylindrical waves is well known. Furthermore, the absence of" wall
effects will represent a simplification.

It is a pleasure to acknowledge the support of the work by the
Air Force Office of Scientific Research, the Office of Naval Research,
and the Naval Postgraduate School.
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